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Abstract

Several mono- and multilingual pre-trained language models were fine-tuned using different 

variants of the training datasets. Cross-lingual transfer learning was applied without instance 

transfer and proved to be effective for Arabic and Dutch. Additionally, we tested the effectiveness 

of class balancing using several under-sampling methods, which, when combined with 

appropriate model selection and cross-lingual transfer learning, produced the second-best results 

for Arabic and English.
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Three parts of the study:

1. Finding the best monolingual model to use as a baseline.

2. Preparing multilingual training dataset variants.

3. Training and evaluating mono- and multilingual models on the prepared datasets.

Phases of the experiments:

1. Testing single language models using unaltered datasets.

2. Testing cross-lingual transfer learning using various concatenations of datasets.

3. Testing the impact of various structural changes to the training datasets.

Main driving research questions:

RQ3: How can cross-lingual transfer be leveraged to improve check-worthiness detection 

using training data in multiple languages?

RQ4: Is it possible to outperform random under-sampling with methods informed by 

annotation quality or training dynamics?

Models used:

English: DeBERTa V3 base, DeBERTa V3 large

Arabic: CAMeLBERT MSA, CAMeLBERT DA, CAMeLBERT CA

Dutch: RobBERT 2023 large, BERTje

Multilingual: mDeBERTa V3 base, XLM-RoBERTa base

Under-Sampling methods:

•  – random under-sampling.RUS

•  – Symmetrically removing the most easy-to-learn and hard-to-learn examples. All DUS

majority class examples were sorted in descending order by their ℓ2 distance from the reference 

point (variability, confidence)=(0.5, 0.5) and removed until the desired class count was reached.

•  – First removing all hard-to-learn examples (defined as examples having an ℓ2 distance HUS

from (variability, confidence)=(0.5, 0.5) greater than 0.35 while having a confidence < 0.5), and 

then removing easy-to-learn examples sorted by descending distance from (variability, 

confidence)=(0.5, 0.5) until the desired class count was reached.

•  – First removing all examples from the majority class with correctness less than five, and CUS

later, if necessary, randomly choosing examples with correctness equal to five until the desired 

class count was reached.

Figure: Results of Cross-Lingual Transfer experiments - F1 score (positive class) for Dutch 

dev_test dataset.

Figure: Results of under-sampling experiments - F1 score (Positive Class) for English dev_test dataset.
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