
Algorytmy ewolucyjne i ich zastosowania
w sztucznej inteligencji
Krzysztof Krawiec
Instytut Informatyki, Politechnika Poznańska
Center of excellence in Artificial Intelligence
and Machine Learning

Seminarium interdyscyplinarne
"Paradygmat ewolucji w naukach społecznych"
Katedra Konkurencyjności Międzynarodowej UEP

26.11.2019

Agenda

1. Problemy przeszukiwania i problemy optymalizacyjne
2. Algorytmy rozwiązywania problemów optymalizacyjnych
3. Algorytmy ewolucyjne
4. Algorytmy koewolucyjne
5. Programowanie genetyczne
6. Uwagi końcowe

1.
Problemy przeszukiwania i
problemy optymalizacyjne

Problemy przeszukiwania i problemy
optymalizacyjne

Problem przeszukiwania:

Mając dany zbiór wszystkich możliwych (dopuszczalnych) rozwiązań
X, znajdź rozwiązanie x spełniające pewną właściwość P(x).

Uwagi:

● X jest zazwyczaj zadany implicite (przez określenie dziedziny i ograniczeń).
● Zbiór X może być, zależnie od typu problemu

○ Ciągły lub dyskretny
○ Skończony lub nieskończony
○ Rozpięty na produkcie Kartezjańskim lub nie.

● Właściwość P może być zadana jawnie, lub mieć charakter wyroczni.
● Rozwiązań spełniających P może być jedno, wiele, lub nieskończenie wiele.

Problemy przeszukiwania i problemy
optymalizacyjne

Problem optymalizacyjne:

Mając dany zbiór wszystkich możliwych (dopuszczalnych) rozwiązań
X, znajdź rozwiązanie x minimalizujące pewną funkcję celu f(x).

Uwagi:

● Lub: maksymalizujące.
● Wartość f w optimum może być znana lub nieznana.
● Każdy problem optymalizacyjny może zostać przekształcony do problemu

przeszukiwania poprzez zadanie pewnego progu aspiracji na f.

2.
Algorytmy rozwiązywania
problemów optymalizacyjnych

Klasy algorytmów rozwiązujących problemy
optymalizacyjne

● Algorytmy dokładne
○ Gwarantują znalezienie optimum.
○ Czas obliczeń może być wykładniczy względem rozmiaru instancji problemu.

● Algorytmy aproksymacyjne
○ Gwarantują znalezienie rozwiązania nie gorszego niż określony ‘procent’ jakości

rozwiązania optymalnego.
○ Czas obliczeń wielomianowy.
○ Da się je zaprojektować jedynie dla pewnych klas problemów.

● Algorytmy heurystyczne
○ Nie dają żadnych gwarancji na znalezienie optimum ani na przybliżenie jego jakości.
○ Czas obliczeń wielomianowy.

3.
Algorytmy ewolucyjne

What is evolutionary computation (EC)?

A branch of Computational Intelligence (CI) devoted to solving optimization,
learning, and design problems using bio-insipred methods, mostly those based on
neo-Darwinian evolution.

CI6=AI
CI emphasizes intelligence as an emergent phenomenon.
CI assumes minimal input of domain knowledge from system’s designer.
Three main branches: EC, Soft computing (Fuzzy Sets etc.), Neural Networks.

Offers unconstrained, black-box optimization.

Successfully applied in many contexts.

Background– 6

A ‘formula’ for Evolutionary Computation

Real-World Applications
Genetic Algorithms
Genetic Programming
Evolutionary Multiobjective Optimization
Ant Colony Optimization
Artificial Life
Estimation of Distribution Algorithms
Genetic-Based Machine Learning
Generative and Developmental Systems
Evolutionary Strategies
...

Background– 7

Cont’d

Some variants/applications of EC missing from the equation:

Evolutionary programming

Evolutionary neural networks

Differential evolution

Search-based software engineering

...

Background– 8

Other bio-inspired algorithms

Swarm intelligence
Ant colony optimization
Particle swarm optimization
Bees algorithm
Cuckoo search

and in a lesser extent also:
Artificial life (also see digital organism)
Artificial immune systems
Cultural algorithms
Firefly algorithm
Harmony search
Learning classifier systems
Learnable Evolution Model
Parallel simulated annealing
Self-organization such as self-organizing maps, competitive learning
Self-Organizing Migrating Genetic Algorithm
Swarm-based computing
Teaching-learning-based optimization (TLBO)

Background– 9

Evolutionary Computation

Evolutionary Computation– 11

Evolutionary Algorithm

Heuristic bio-inspired global search algorithms

Operate on populations of candidate solutions

Candidate solutions are encoded as genotypes

Genotypes get decoded into phenotypes when evaluated by the fitness function f
being optimized.

Formulation:

p∗ = argmax
p∈S

f (p)

where

S is the considered space (search space) of candidate solutions (solutions for
short)

f is a (maximized) fitness function

p∗ is an optimal solution (an ideal) that maximizes f .

Evolutionary Computation– 12

Generic evolutionary algorithm

Evolutionary Algorithm

Population P of individuals

Evaluation

Selection

Mutation and recombination

Initialization of population P

Solution/individual s

f(s)

Output: Best solution s+

Termination criteria

Fitness function f

Evolutionary Computation– 13

Important features of EC

Iterative, which implies that:
The problem is too difficult to be solved in a single iteration.
The search algorithm, while solving the problem, gradually acquires some knowledge
about it.

Population-based (parallel)
Stochastic (both initialization and execution)

Heuristic (not exact); in most cases not even approximative.

So far it looks as a stochastic, parallel local search. Is there anything new to this?

Importance of recombination (crossover): a recombination operator that makes
the solutions exchange certain elements (variable values, features)

EC performs global search

Evolutionary Computation– 14

Features of problems

Features of problems that can be tackled using EC

Black-box optimization
how f depends on the independent variables does not have to be known or meet
any criteria.

Variables do not have to be explicitly defined

Better a good solution today than a perfect tomorrow.
Fining an optimum cannot be guaranteed, but in practice a well-performing
suboptimal solution is often satisfactory.

Evolutionary Computation– 15

Convergence to good solutions may take some time ...

Source: http://xkcd.com/720/

(Actually, some variants of EC maintain and manipulate infeasible solutions)

Evolutionary Computation 101 43

http://xkcd.com/720/

Variants of evolutionary algorithms

Well rooted in EC:
Genetic algorithms (GA): discrete (binary) encoding
Evolutionary strategies (ES): real-valued encoding
Evolutionary programming (EP): not particularly popular nowadays, but
historically one of the first approaches to EC
Genetic Programming (GP)

Newer branches:
Estimation of distribution algorithms (EDA), generative and developmental
systems (GDS), differential evolution, learning classifier systems, ...
Not strictly EC: particle swarm optimization (PSO), ant colony
optimization (ACO),

Note:
EC = Evolutionary Computation, the name of the domain

Evolutionary Computation 101 40

Major events of EC

Genetic and Evolutionary Computation Conference (GECCO)
IEEE Congress on Evolutionary Computation (CEC)
EvoStar (Evo*)
Parallel Problem Solving from Nature (PPSN)

Some facts:
ACM SIGEVO group
IEEE Task Forces
Several dozens of thousands of publications (GP alone has almost 10,000)
EC considered one of the three major branches of Computational
Intelligence (Fuzzy Systems and Neural Nets being the other ones)

Evolutionary Computation 101 41

Convergence to good solutions may take some time ...

Source: http://xkcd.com/720/

(Actually, some variants of EC maintain and manipulate infeasible solutions)

Evolutionary Computation 101 43

http://xkcd.com/720/

4.
Algorytmy koewolucyjne

Coevolutionary algorithms

A form of evolutionary algorithm where evaluation of individuals is influenced
(determined) by other evolving individuals [5, p. 2].

(while in standard evolutionary algorithms, individuals interact only with the
environment embodied by the fitness function f)

The particular form of influence depends on the variant of coevolution.

Essential feature of coevolution: inter-individual interactions.

Part II: Coevolutionary algorithms– 53

Evolution vs. coevolution

Part II: Coevolutionary algorithms– 54

Consequences

The outcome of evaluation depends on who is the other participant of interaction.

The individuals one interacts with form a context.
That context changes with time (from generation to generation).
Moreover, it can ‘respond’ to individual’s changes, because:

The outcome of my interaction with individual x influences it fitness.
Depending on that fitness, x can spawn an offspring in the next generation or not.
This in turn influences chances of survival for my offspring.

Performing well or badly in a specific context does not mean being objectively
good or bad.

Part II: Coevolutionary algorithms– 55

Inspiration

Nature knows only coevolution!
There is no ‘overlord’ that assigns fitness to each individual.
In biology, fitness is a quantity that can be measured, but not imposed.
E.g.: Absolute fitness of a genotype is the ratio between the number of individuals
with that genotype after selection to those before selection [Wikipedia]

The natural coevolution takes place at different levels:
intra-species, resulting from competition between individuals,
inter-species, resulting from competition between species, demes, etc.

Part II: Coevolutionary algorithms– 56

Objective vs. subjective fitness

To implement section pressure, we still need some fitness function.

Evolutionary algorithm uses objective fitness f : S→ R
Coevolutionary algorithms (typically) use subjective fitness fs , which is derived
from the outcomes of interactions between individuals.

Exemplary definition of subjective fitness:

fs(s) = ∑
s ′∈P

g(s,s ′)

where g : S×S→ R - an interaction function; more precisely:

f (t)s (s) = ∑
s ′∈P(t)

g(s,s ′)

Notes:

Typically, fs 6= f

The codomain of f and fs does not have to be real-valued, any totally ordered set
would do.

Part II: Coevolutionary algorithms– 57

Isn’t this odd?

Part II: Coevolutionary algorithms– 58

Variants of coevolutionary algorithms

Various genres of coevolutionary algorithms differ mostly in the way the individuals
interact with each other.

Single-population vs. multi-population
Single-population: individuals kept in a single set, and interact with each other
according to some scheme (e.g., round robing, k random opponents, single
elimination tournament). All individuals play the same ‘roles’.
Multi-population: individuals split into two or more subsets. Interactions typically
take place only between individuals from different populations. Individuals from
different population may play different roles.

Competitive vs. cooperative
Competitive: Individuals try to ‘win’ as many interactions as possible.
Cooperative: Individuals are assumed to cooperate to solve the posed task (typically
used with multiple populations).

Part II: Coevolutionary algorithms– 59

Single-population competitive coevolution

Individuals compete against each other.

In the evaluation phase, tournaments (contests) are being organized, in which
pairs or groups of individuals from populations compete in interactions.

The interaction function g typically implements a zero-sum game: the winner
scores x while the loser −x
A class of such problems is sometimes referred to as adversarial problems [16, p.
2].

Part II: Coevolutionary algorithms– 60

Case study 1: Competitive coevolution

Typical application of single-population competitive coevolution: learning game
strategies.

Each individual implements a strategy.
Interaction consists in playing a game.
The result of the game (qualitative or quantitative) becomes the outcome of
interaction.
Individual’s fitness is the average outcome of all games played.
Successfully applied to games like checkers, Othello, ...

Example (Case study 1):
Single-population fitnessless coevolution.
Key idea:

Standard approach: 1) play games, 2) calculate fitness, 3) use that fitness for
selection.
Idea: combine 1) with 3), skipping 2). There is no explicit evaluation phase.
Individuals play games and this determines whether they get selected or not.

Based on: W. Jaśkowski, K. Krawiec, and B. Wieloch. Evolving strategy for a
probabilistic game of imperfect information using genetic programming. Genetic
Programming and Evolvable Machines, 9(4):281–294, 2008

Part II: Coevolutionary algorithms– 61

Two-population competitive coevolution

Individuals partitioned into disjoint collections, called subpopulations Pi (species
or demes in evolutionary theory). For brevity, we call them populations.

Part II: Coevolutionary algorithms– 62

Two-population competitive coevolution

One of motivations: asymmetry of interactions (interaction participants play
different roles).

Example: white players and black players in checkers.

Populations called also [1]:
‘predators’ and ‘preys’,
‘parasites’ and ‘hosts’,
‘problem generators’ and ‘problem solvers’,
‘teachers’ and ‘learners’,
‘candidates’ and ‘tests’ .

Part II: Coevolutionary algorithms– 63

An example: Density classification task (DCT)

Density classification task: synthesize a state transition rule for a binary,
one-dimensional cellular automaton (CA) of size n, such that it ‘classifies’ the initial
state of the automaton depending on whether there are more 0’s or 1’s in it.

If the initial state contains more 0’s, the rule should transform the state into ‘all
0’s’.

And vice versa for 1’s.

1 0 0 1 1 0 1 1 0 0
↓ ↓

1 0 1 1 1 0 0 1 0 0
↓ ↓
.

1 1 1 1 1 0 0 0 0 0

Part II: Coevolutionary algorithms– 64

Rules for automata

Rules have fixed, limited radius r
2r +1� n: rules cannot ‘see’ the entire state

E.g., for r = 1:

1 0 0 1 1 . . . 0 1 1 0 0
↓ ↓

1 0 1 0 0 . . . 1 0 1 1 1

Rules are represented as lookup tables
22r+1 entries.

Part II: Coevolutionary algorithms– 65

Digression 1: 1D automata

Even simple rules can produce patterns of exquisite complexity.
Some of these rules are proven to perform Turing-complete computation.

Wolphram’s book “A New Kind of Science”

Part II: Coevolutionary algorithms– 66

Digression 2: 2D automata

John Convay’s Game of Life
http://en.wikipedia.org/wiki/Conway’s_Game_of_Life

Part II: Coevolutionary algorithms– 67

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

Complexity of DCT

Exact evaluation of a rule requires applying it to all 2n possible states.

The most popular setting is n = 149, and the upper limit of the number of rule
application 320.

Posed as test-based problems:
Candidate solutions = transition rules
Tests = initial states of the automaton.

The best rule for n = 149, t = 320, r = 3, found using coevolutionary algorithm:
success rate 86.3% [6]; see also [2]

Key insight: coevolutionary algorithm can reduce the number of interactions
required to find a solution.

See

Part II: Coevolutionary algorithms– 68

Coevolutionary pathologies

Does it always work so well?

No. Lack of external, objective evaluation makes it difficult to predict where the
evolution will head to.

Coevolutionary pathology – a situation in which solutions change with time (seem to
‘do’ something), but with no or little objective progress.

Selected types of pathologies (explained in next slides):

Red Queen effect

Disengagement

Focusing (overfocusing)

Other: Collusion, Forgetting

Part II: Coevolutionary algorithms– 69

Red Queen effect

Assume the is a cycle in the game graph. Example: Rock, Paper, Scissors game:

R � S , S � P, P � R

Consider the following scenario of evolution:

Generation (tour) 1 2 3 4 5 6 7
Individual 1 R R P P S S R . . .
Individual 2 S R R P P S S . . .

Both individuals do their best to beat the opponent, but overall there is no
long-term progress.

Lewis Carroll, Through the Looking-Glass:
It takes all the running you can do, to keep in the same place.

Relative improvements (i.e., with respect to each other) do not translate into
absolute (objective) improvement of fitness.

Also known as cycling.

Examples from nature: The arms race of parasites and host, immune system.

Part II: Coevolutionary algorithms– 70

Cycling

Example: Tic-tac-toe (TTT)

Consider TTT strategies represented in a straightforward way: as an ordering of
locations to be taken by a player.

If a numbered location is already taken, the player places a piece on the location
marked by ‘*’.

A� B, B � C , C � A

Note:

These are simple examples, in real-world this becomes more subtle (and ‘noisy’).

Certain variants of coevolution (e.g., fitnessless coevolution) cease to behave like
evolution for intransitive interactions.

Part II: Coevolutionary algorithms– 71

Disengagement

Applies mostly (if not exclusively) to two-population coevolution.

Example: Checkers

Population P1: White players

Population P2: Black players

Assume P1 is filled with master-level players, while P2 contains only novices.
All interactions between players from P1 and P2 end with the former ones winning.
All masters seem to be equally good; all novices seem to be equally bad (even if
they are in fact different!).

There is no way to tell apart better masters from good masters; similarly for
novices. Evolution stalls.

A.k.a. loss of gradient.

The above may happen during evolution, or may apply to initial state of evolution
(how should I draw individuals for my initial population?)

Part II: Coevolutionary algorithms– 72

Focusing

Checkers example cont’d.

Assume individuals in P1 converge so that they all start the game with moving
the leftmost piece on the board (but possibly later play differently).

The opponents from P2 will ‘get used’ to it. Never having an opportunity to face
an opponent that behaves differently, they will specialize in beating white players
that start with the leftmost piece.

When faced with new (‘external’) players (e.g., human), players from P2 will be
likely to lose.

A.k.a. over-specialization.

May be seen as an analog to overfitting in machine learning.

Part II: Coevolutionary algorithms– 73

Lessons learned from coevolutionary pathologies

Problems arise when:

Population(s) converge (focusing).

Population(s) diverge (disengagement).

Population(s) forget that they’ve ‘already been there’.

The diagnosis:

Pure coevolution has rather bad memory.
Why does it work in Nature? Nature does not care about objective progress.

Part II: Coevolutionary algorithms– 74

The problem

The current population is expected to:

be diversified enough to enable further search and progress,

represent (store?) the best solution found so far,

It can be difficult to do both at the same time.

The idea: split these functionalities, delegating (2) to an archive.

Part II: Coevolutionary algorithms– 75

Archives

An archive is a ‘memory’ of a coevolutionary search.

Maintains ‘good’ solutions found so far in the search process.

Can be used to confront the evolved solutions with.

[Sometimes] represents the final outcome of the search process.

Types of archives:

Hall-of-fame

Dominance tournament

Nash memory

Pareto archives

Part II: Coevolutionary algorithms– 76

Hall-of-fame (HoF)

Initially an empty set

Maintenance: Extended by the (subjectively) best-of-generation in each generation
(grows indefinitely)

Exploitation: Draw k members from HoF and let the individuals in the population
interact (play) with them

As a result, every individual plays with its peers and with some ‘older masters’.

The outcomes of interactions with the HoF members [partially] influence fitness.

Rationale: A good individual should perform well against its peers in population as well
as the HoF members.

This provides a form of historic progress [9].

Part II: Coevolutionary algorithms– 77

Pareto archives (Pareto coevolution)

First note some downsides of HoF:

HoF is ‘passive’, never changes on its own.

May contain many weak individuals (from the initial generations of the run),
which may be not worth to interact with.

Note: The purpose of individuals in archive is not to perform good, but to tell apart
good and bad candidate solutions (provide gradient for them).

The idea: Let the members of archive evolve too, but using a different objective.
This takes [again] to [a variant of] two-population coevolution:

Population of candidate solutions (candidates),
Population of tests (archive)

Example: Say we want evolve a white player’s strategy for checkers.
Candidates: white players.
Tests: black players.
Candidates get rewards for performing against tests, e.g., the number of wins
against tests.
Tests get awards for distinctions, e.g., how many pairs of candidates they
differentiate.

Part II: Coevolutionary algorithms– 78

Test-based problems

Problems in which:

Interaction function can be defined.

Exact evaluation of solutions involves many (possibly infinitely many) interactions.

Domain Candidate Test

Algorithm design Sorting network Unsorted list

Classification Classifier Data point (or subset thereof)

Function regression Function Input (datapoint)

Strategy learning First player Second player

Optimization Search algorithm Problem instance

Part II: Coevolutionary algorithms– 79

Solution concepts: What do we optimize?

Given that the interaction function g is the only driving force of the search
process, where does this process head to?

Can we identify somehow the goal of the search process?
What is the solution?

The answer: solution concept: a subset of the search space that contains the
solutions to be sought.

Among many solution concepts, some are more useful/natural (see next slide).

Various coevolutionary algorithms are designed with specific solution concepts in
mind.

Part II: Coevolutionary algorithms– 80

Selected solution concepts

Simultaneous maximization of all outcomes
A solution belongs to this solution concept if it maximally beats all other solutions:

{s ∈ S : ∀t ∈ S ,t 6= s : g(s,t) = gmax}

Quite naive. Will be often empty.

Maximization of expected utility
A solution belongs to this solution concept if it offers a maximal outcome of
interaction against a randomly drawn opponent (context):

argmax
s∈S

E(g(s,t))

where t is randomly drawn from S (argmax may return a set).

Other well-defined solution concepts:

Pareto-optimal set

Best worse case

(See textbooks on game theory for more on that)

Part II: Coevolutionary algorithms– 81

Cooperative coevolution

Individuals from particular populations encode disjoint parts of the solution.
Requires a modular representation of the problem
Offers some means to decompose a complex problem.

Typically, populations Pi , i = 1 . . .np , are delegated to work on the i th fragment of
the whole solution.

Referred also to as symbiotic [16, p.8] or parasitic [3] coevolution[3, 18, 14, 15]

Part II: Coevolutionary algorithms– 82

Cooperative coevolution: The idea

Part II: Coevolutionary algorithms– 83

Cooperative coevolution: The algorithm

Part II: Coevolutionary algorithms– 84

5.
Programowanie genetyczne

Genetic programming

In a nutshell:
A variant of EA where the genotypes represent programs, i.e., entities
capable of reading in input data and producing some output data in
response to that input.
The candidate solutions in GP are being assembled from elementary
entities called instructions.
Most common program representation: expression trees.
Cardinality of search space large or infinite.

What is genetic programming? 47

Fitness function

EA solves optimization problems. Program synthesis is a search problem. How
to match them?

Fitness function f measures the similarity of the output produced by the
program to the desired output, given as a part of task statement.
The set of program inputs I , even if finite, is usually so large that running
each candidate solution on all possible inputs becomes intractable.
GP algorithms typically evaluate solutions on a sample I ′ ⊂ I , |I ′| � |I | of
possible inputs, and fitness is only an approximate estimate of solution
quality.
The task is given as a set of fitness cases, i.e., pairs (xi ,yi) ∈ I ×O, where
xi usually comprises one or more independent variables and yi is the output
variable.

What is genetic programming? 48

Fitness function: Example

City-block fitness function:

f (p) =−∑
i

||yi −p(xi)||, (1)

where
p(xi) is the output produced by program p for the input data xi ,
|| · || is a metric (a norm) in the output space O,
i iterates over all fitness cases.

What is genetic programming? 49

Genetic programming

Main evolution loop (‘vanilla GP’)

1: procedure GeneticProgramming(f ,I) . f - fitness function, I - instruction set
2: P ←{p← RandomProgram(I)} . Initialize population
3: repeat . Main loop over generations
4: for p ∈P do . Evaluation
5: p.f ← f (p) . p.f is a ‘field’ in program p that stores its fitness
6: end for
7: P ′← /0 . Next population
8: repeat . Breeding loop
9: p1←TournamentSelection(P) . First parent
10: p2←TournamentSelection(P) . Second parent
11: (o1,o2)← Crossover(p1,p2)
12: o1←Mutation(o1,I)
13: o2←Mutation(o2,I)
14: P ′←P ′ ∪{o1,o2}
15: until |P ′|= |P|
16: P ←P ′

17: until StoppingCondition(P)
18: return argmaxp∈P p.f
19: end procedure

What is genetic programming? 50

Search operators: Mutation

Mutation: replace a randomly selected subexpression with a new randomly
generated subexpression.

1: function Mutation(p,I)
2: repeat
3: s← Random node in p
4: s ′← RandomProgram(I)
5: p′← Replace the subtree rooted in s with s ′

6: until Depth(p′)< dmax . dmax is the tree depth limit
7: return p′

8: end function

Source: [Poli et al., 2008]
What is genetic programming? 51

Search operators: Crossover

Crossover: exchange of randomly selected subexpressions (subtree swapping
crossover).

1: function Crossover(p1,p2)
2: repeat
3: s1← Random node in p1
4: s2← Random node in p2
5: (p′1,p

′
2)← Swap subtrees rooted in s1 and s2

6: until Depth(p′1)< dmax ∧Depth(p′2)< dmax . dmax is the tree depth limit
7: return (p′1,p

′
2)

8: end function

Source: [Poli et al., 2008]
What is genetic programming? 52

Q & A

Q: What is the most likely outcome of application of mutation/crossover to a
viable program?

Hint:
But, however many ways there may be of being alive, it is certain that
there are vastly more ways of being dead, or rather not alive. (The
Blind Watchmaker [Dawkins, 1996])

A: Most applications of genetic operators are harmful4

Yet, GP works. Why?

Mutation is random; natural selection is the very opposite of random
(The Blind Watchmaker [Dawkins, 1996])

4Turns out: In GP, quite many of them can be neutral (neutral mutations).
What is genetic programming? 53

Q & A

Q: What is the most likely outcome of application of mutation/crossover to a
viable program?

Hint:
But, however many ways there may be of being alive, it is certain that
there are vastly more ways of being dead, or rather not alive. (The
Blind Watchmaker [Dawkins, 1996])

A: Most applications of genetic operators are harmful4

Yet, GP works. Why?

Mutation is random; natural selection is the very opposite of random
(The Blind Watchmaker [Dawkins, 1996])

4Turns out: In GP, quite many of them can be neutral (neutral mutations).
What is genetic programming? 54

Q & A

Q: What is the most likely outcome of application of mutation/crossover to a
viable program?

Hint:
But, however many ways there may be of being alive, it is certain that
there are vastly more ways of being dead, or rather not alive. (The
Blind Watchmaker [Dawkins, 1996])

A: Most applications of genetic operators are harmful4

Yet, GP works. Why?

Mutation is random; natural selection is the very opposite of random
(The Blind Watchmaker [Dawkins, 1996])

4Turns out: In GP, quite many of them can be neutral (neutral mutations).
What is genetic programming? 55

Exemplary run: Setup

A mini-run of GP applied to a symbolic regression problem (from:
[Poli et al., 2008])

Objective: Find a program whose output matches x2+x+1 over the range
[−1,1].

Such tasks can be considered as a form of regression.
As solutions are built by manipulating code (symbolic instructions), this is
referred to as symbolic regression.

Fitness: sum of absolute errors (City-block distance) for
x ∈ −1.0,−0.9, ...0.9,1.0:

xi -1.0 -0.9 . . . 0 . . . 0.9 1.0
yi 1 0.91 . . . 1 . . . 2.71 3

What is genetic programming? 56

Exemplary run: Setup

Instruction set:
Nonterminal (function) set: +, -, % (protected division), and x ; all
operating on floats
Terminal set: x , and constants chosen randomly between -5 and +5

Initial population: ramped half-and-half (depth 1 to 2; 50% of terminals are
constants)
Parameters:

population size 4,
50% subtree crossover,
25% reproduction,
25% subtree mutation, no tree size limits

Termination: when an individual with fitness better than 0.1 found
Selection: fitness proportionate (roulette wheel) non elitist

What is genetic programming? 57

Initial population (population 0)

What is genetic programming? 58

Fitness assignment for population 0

Fitness values: f(a)=7.7, f(b)=11.0, f(c)=17.98, f(d)=28.7

What is genetic programming? 59

Breeding

Assume:
a gets reproduced
c gets mutated (at locus 2)
a and d get crossed-over
a and b get crossed-over

Note:
All parents used; this in general does not have to be the case.

What is genetic programming? 60

Population 1

Population 0:

Population 1:

Individual d in population 1 has fitness 0.

What is genetic programming? 61

High cost of evaluation

Running a program on multiple
inputs can be expensive.
Particularly for some types of data,
e.g., images

Solutions:
Caching of outcomes of
subprograms
Parallel execution of programs on
particular fitness cases
Bloat prevention methods

Right: Example from [Krawiec, 2004].
Synthesis of image analysis algorithms,
where evaluation by definition incurs
high computational cost.

Challenges for GP 91

Linear GP

Example from [Krawiec, 2004]: the process of program interpretation:

and the corresponding data flow, including the initial and final register contents:

Initial register
contents

Final register
contents

x1

x2 O1 O2

x3

O3 O4 g2

g3

g1r1

r2

r3

r1

r2

r3

Variants of GP 96

Cartesian GP

Variants of GP 99

Selected Gold Humies using GP

2004: Jason D. Lohn Gregory S. Hornby Derek S. Linden, NASA Ames
Research Center,
An Evolved Antenna for Deployment on NASA’s Space Technology 5
Mission

http://idesign.ucsc.edu/papers/hornby_ec11.pdf

Applications of GP 110

http://idesign.ucsc.edu/papers/hornby_ec11.pdf

Selected Gold Humies using GP

2009: S. Forrest, C. Le Goues, ThanhVu Nguyen, W. Weimer
Automatically finding patches using genetic programming: A Genetic
Programming Approach to Automated Software Repair

Successfully fixes a ’New Year’s bug’ in Microsoft’s MP3 player Zune.

Applications of GP 111

Applications: End user programming

Many end-users need some form of ’programmatic automation’ of certain tasks,
like commodity traders, graphic designers, chemists, human resource managers,
finance pros, ...

These users typically lack the technical skills to program from scratch.

General Purpose Programming Assistance
Synthesis can be used to find tricky/mundane implementation details after
human insight has been expressed in the form of a partial program [65]
Automated Debugging

See also: Flash fill [Gulwani et al., 2012]

Birds-eye view on program synthesis 148

Cartesian GP

Variants of GP 98

6.
Uwagi końcowe

Podsumowanie

● Algorytm ewolucyjny = jedna z metaheurystyk.
● Adresowane do trudnych problemów optymalizacji ciągłej, optymalizacji

kombinatorycznej i uczenia maszynowego
● Wykazana skuteczność na szerokiej gamie problemów praktycznych.
● Ograniczone, niemniej stale rosnące ugruntowanie teoretyczne.
● Często hybrydyzowany z innymi podejściami.

Metody ewolucyjne vs. metody gradientowe

Metody ewolucyjne

● Iteracyjne

● Stochastyczne

● Przeszukiwanie populacyjne,
globalne

● Niskie ryzyko utknięcia w
lokalnych optimach

● Dowolność w projektowaniu
operatorów przeszukiwania

Metody gradientowe

● Iteracyjne

● Deterministyczne (*)

● Przeszukiwanie lokalne

● Wysokie ryzyko utknięcia w
lokalnych optimach

● Operatory przeszukiwania
wynikają wprost z reguły spadku
gradientu (steepest descent)

Paradygmat ewolucji?

● Paradygmat = “zbiór pojęć i teorii tworzących podstawy danej nauki”

● Paradygmat metaheurystyczny
○ Rozwój algorytmów specjalizowanych do rozwiązywania pewnych (pod)klas problemów,

wykorzystujących charakterystykę (strukturę) tych problemów dla zwiększenia
efektywności, zarówno w sensie efficiency, jak i efficacy (effectiveness).

● Paradygmat obliczeń ewolucyjnych
Główne cechy charakterystyczne:
○ Stochastyczny charakter.
○ Wykorzystanie stosunkowo “słabo ukierunkowanych” operatorów przeszukiwania.

Dziękuję za uwagę.

