Katedra Statystyki

Wizyta profesor Natalie Shlomo z Uniwersytetu w Manchesterze

5 maja, 2025

Katedra Statystki UEP, Polskie Towarzystwo Statystyczne oddział w Poznaniu oraz Urząd Statystyczny w Poznaniu zapraszają na dwa wydarzenia (8.05, czwartek) w związku z wizytą profesor Natalie Shlomo z Uniwersytetu w Manchesterze, aktualnej przewodniczącej International Association of Survey Statisticians (https://isi-iass.org/home/) będącego częścią International Statistical Institute (https://isi-web.org/).

  • 10.00-12.00 (Urząd Statystyczny w Poznaniu) — Seminarium poświęcone kontroli ujawniania danych statystycznych (transmisja online na platformie Zoom, link: https://ue-poznan-pl.zoom.us/j/91387037844?pwd=RemFOgdYrqO30sjmjnMV1pRAvWwMU6.1, id: 913 8703 7844, kod: 750142)
  • 15:00 – 16:30 (UEP 2.1 Bydunek D/CEUE) — Referat pt. R-indicators for Assessing Representativeness for Surveys, Administrative Data and Non-probability Samples  (transmisja online na platformie Zoom, link: https://ue-poznan-pl.zoom.us/j/99853793031?pwd=sXkPbZvTLJac9bs72seOIbL0bLyJ65.1, id: 998 5379 3031, kod: 868092)
     
    Abstrakt:  In this presentation, we focus on the use of Representativity (R-) Indicators to assess representativeness in survey and non-survey data. We start with the initial purpose of developing R-indicators for use in adaptive survey designs in probability-based surveys. Through the analysis of R-indicators, we can build profiles (characteristics) of the data units where more or less attention is required in the data collection. We present an application of an adaptive survey design for the Dutch Crime Victimisation Survey. R-indicators have been extended to allow for assessing representativeness in survey data when information about nonrespondents is not available. For this purpose, we can use population marginal and cross-tabulations to use as ‘plug-ins’ under a linear regression for estimating response propensities and R-indicators. We demonstrate with an application where R-indicators were successfully applied to assess representativeness in the 2011 EU-SILC datasets using 2011 European census counts as population benchmarks. More recently, R-indicators have been developed to assess representativeness in non-survey data sources, namely administrative data and non-probability samples. We show applications on assessing representativeness in non-survey data, making use of high-quality survey data collections to produce the population benchmarks.

Biogram prof. Natalie Shlomo (https://research.manchester.ac.uk/en/persons/natalie.shlomo):

Natalie Shlomo is Professor of Social Statistics since joining the faculty in September 2012. She was the head of the Department of Social Statistics (2014-2017).  Her research interests are in topics related to  survey statistics and survey methodology.    She was the UK principle investigator for several collaborative grants from the 7th Framework Programme and H2020 of the European Union all involving research in improving survey statistics and dissemination. She was the principle investigator for several ESRC funded grants and The Leverhulme Trust Network Grant. She was a co-investigator for the NCRM grant 2014-2019. More recently, she was  co-investigator for  ESRC funded grants to the Centre on the Dynamics of Ethnicity (CoDE) focusing on studying the   impact of Covid-19 on ethnic minority groups in Britain using innovative study designs.  She is  currently a co-investigator on a collaborative  ESRC grant on the future of survey data collections.   She is an elected member of the International Statistical Institute  and a fellow of the Royal Statistical Society.   She was President-Elect of the International Association of Survey Statisticians and is currently serving as President 2023-2025. She serves on editorial boards of several journals as well as national and international advisory boards.

Wykład prof. Natalie Shlomo sfinansowano ze środków Ministra Nauki przyznanych w ramach Programu „Regionalna inicjatywa doskonałości” na realizację projektu „Uniwersytet Ekonomiczny w Poznaniu dla Gospodarki 5.0: Inicjatywa regionalna – efekty globalne (IREG)”.

Strona korzysta z plików cookie w celu realizacji usług zgodnie z Polityką prywatności.
Możesz określić warunki przechowywania lub dostępu do cookie w Twojej przeglądarce lub konfiguracji usługi.